
Data Wrangling
Joseph Nathan Cohen

2/1/2020

Contents
About Data Wrangling 2

What is Data Wrangling? . 2
Steps Involved . 2
Starting Our Session . 2

Loading the Data 2
CSV Files . 3
Excel Spreadsheets . 3
From Another Analysis Program (Stata, SAS, SPSS) . 3
Pulling Data from the Web . 4

Tidying the Data 4
What is “Tidy” Data . 4
Strategize Your Tidying Operations . 5
gather() . 7
spread() . 8

Labeling 9

Recoding 9
Rescaling Values . 9
Changing Values Based on Logical Tests . 10
Creating New Variables from Existing Data . 10
Creating Categories from Continuous Data . 11
When a Character Intrudes into Numeric Data . 11

Reducing Data Tables 12
Dropping Variables . 13
Dropping Observations . 14

Saving 14

1

About Data Wrangling
What is Data Wrangling?
Data wrangling (a.k.a. “munging”) is the process of preparing data for an analysis. Most data sets are
messy and require preparation for analysis. Improperly cleaned data can distort your results. Many of the
techniques that we will learn this year are premised on your data being organized according to the guidelines
presented below.

Side note: Although wrangling is only one week of our semester, it typically takes up a considerably larger
proportion of your analysis.

Steps Involved
We will assume that you have already acquired your data. Also, if you are using a secondary data set (i.e.,
one that you did not collect yourself), I will assume that you already read the codebook.

Once you have your data on hand, the wrangling process involve many kinds of operations

• Loading
• Reshaping / Tidying
• Labeling
• Recoding
• Trimming / Subsetting
• Saving
• Merging

These notes provide an overview of these steps.

Starting Our Session
Recall these lines of code to start your R session:
rm(list=ls())
gc()

directory <- "E:/Dropbox/Teaching/Data 712/05"
setwd(directory)

Let’s get started.

Loading the Data
Most of you will probably be working with data that has been partly wrangled into a spreadsheet, comma-
separated values file, or text file. It is also possible to download data through direct queries of online
databases.

2

CSV Files
To import data from comma-separated values files, use the read.csv() command. Below, I am calling up
sample murder data, which can be downloaded from the class Slack or Blackboard pages. Note that this is
fake data.
homicides <- read.csv("Sample Homicide Data.csv")
homicides

Year Happy.City Funburgh Sadville Angry.Town Rageopolis
1 2000 688 284 7 11 45
2 2005 731 250 8 13 73
3 2010 733 357 8 13 33
4 2015 1200 388 8 15 45
5 2020 1929 434 8 17 61

Note that there is also a write_csv() command to write an object to a comma-separated values file:
write.csv(homicides, file = "Murder Data.csv")

Excel Spreadsheets
To import data from Excel to R, you can use the read_xlsx() command from the readxl package. Look at
the Excel workbook first – you will find the data is on the second sheet:
library(readxl) #Remember to load the library
population <- read_xlsx("Sample Population Data.xlsx", sheet = 2)
population

A tibble: 5 x 6
city `2000` `2005` `2010` `2015` `2020`
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Happy City 825000 950000 1100000 1200000 1350000
2 Funburgh 625000 700000 750000 775000 825000
3 Sadville 25000 26000 24000 26000 28000
4 Angry Town 125000 155000 165000 170000 165000
5 Rageopolis -99 55000 80000 110000 1750000

Sure, the data is not yet clean. So far, we’re only loading data into memory so that we can clean it.

From Another Analysis Program (Stata, SAS, SPSS)
These data can be read using commands from the foreign package. I call these objects “mydata”, but
remember that you can name them anything.
library(foreign)

#SAS transport
my.data <- read.xport("My SAS Data File.xport")

#Stata
my.data <- read.dta("My Stata Data dta")

#SPSS
my.data <- read.spss("My SPSS Data spss")

We won’t be using these data here. They are presented here only for your future reference.

3

Figure 1: “Tidy Data Visualized”

Pulling Data from the Web
html Scraping

This involves downloading an html table from a web page. For a tutorial on this topic using the rvest
package, visit https://blog.rstudio.org/2014/11/24/rvest-easy-web-scraping-with-r/

APIs

APIs are Application Program Interfaces, a generic term for software routines that allow computers to
interface with each other. In practice, data scientists often use APIs to fetch data over the web. These
routines are a bit more complicated. For a tutorial that uses the httr and jstonlite pacakges, see https:
//www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/

Want to Learn More?

If you wish to take a deeper dive into this topic, why not try the DataCamp course Intermediate Importing
Data in R?

Tidying the Data
What is “Tidy” Data
At this step, you will “tidy” your data. Most of the methods we will study assume tidy data. “Tidy” data is
a standard format for data storage in which:

• Rows correspond to subjects / units of analysis
• Columns correspond to variables

Figure 1 (below) depicts tidy data.

In circumstances in which you are dealing with longitudinal data, in which the same subject is measured over
time, we treat time as another variable. I will illustrate this way of organizing data below. The data stored
above in the objects homicides and population are not tidy.

4

https://blog.rstudio.org/2014/11/24/rvest-easy-web-scraping-with-r/
https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/
https://www.r-bloggers.com/accessing-apis-from-r-and-a-little-r-programming/
https://www.datacamp.com/courses/importing-data-in-r-part-2
https://www.datacamp.com/courses/importing-data-in-r-part-2

Strategize Your Tidying Operations
Your first step is to make sense of how the data is organized in your raw set, and develop a sense of which
reshaping operations are necessary to render tidy data. Take our data from the object population:
population

A tibble: 5 x 6
city `2000` `2005` `2010` `2015` `2020`
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Happy City 825000 950000 1100000 1200000 1350000
2 Funburgh 625000 700000 750000 775000 825000
3 Sadville 25000 26000 24000 26000 28000
4 Angry Town 125000 155000 165000 170000 165000
5 Rageopolis -99 55000 80000 110000 1750000

I will look at a table like this and think of it like a puzzle. In this case, you can envision splitting the data
table and stacking the columns. It’s like a puzzle game! Here’s a more drawn out illustration of this reshaping
operation. As we go through the code, try to imagine splitting a data table up and refitting it to make it tidy.

I’m going to take the -population- object above, and create five objects, each of which has the data covering
one year. I keep the city name column for each object, and add the corresponding year as an additional
column. The operations that I’m using include:

• cbind() which binds two tables with the same number of rows across columns. It’s like taking one
table and adding it as columns to the right of another table.

• rbind(), or “row bind”. This command stacks data tables with similar numbers of columns on top of
each other

• rep() which creates repeated number series
#I accomplish the operation using this code:
pop.1 <- cbind(population[,c(1,2)], rep(2000,5))

#The resulting data object looks like this:
pop.1

city 2000 rep(2000, 5)
1 Happy City 825000 2000
2 Funburgh 625000 2000
3 Sadville 25000 2000
4 Angry Town 125000 2000
5 Rageopolis -99 2000
#Do it for the other columns
#The command cbind() binds vectors or tables together by columns
pop.2 <- cbind(population[,c(1,3)], rep(2005,5))
pop.3 <- cbind(population[,c(1,4)], rep(2010,5))
pop.4 <- cbind(population[,c(1,5)], rep(2015,5))
pop.5 <- cbind(population[,c(1,6)], rep(2020,5))

I’m going to use a loop to give all of these data objects the same column names. This is necessary to avoid
an error with rbind(). The commands I use below include:

• for, which initiates loops. More on that later.
• get() to call a text object as if it were an object name
• paste() and paste0 to concatenate multiple elements into a single, concatenated character set
• names() to call out the names of an object’s constituent elements (e.g., variable names on a data table)
• assign() to assign a value to a name in an environment.

5

for (i in 1:5){
temp <- get(paste0("pop.", i))
names(temp) <- paste(c("city", "population", "year"))
assign(paste0("pop.", i), temp)
}

We then stack these individual frames using rbind()
pop.data <- rbind(pop.1, pop.2, pop.3, pop.4, pop.5)

#Forgive my nit pickiness, but I like my data tables
#to have unit identifiers first and then time variables (if present) second.
pop.data <- pop.data[,c(1,3,2)]

And our data is tidy!
pop.data

city year population
1 Happy City 2000 825000
2 Funburgh 2000 625000
3 Sadville 2000 25000
4 Angry Town 2000 125000
5 Rageopolis 2000 -99
6 Happy City 2005 950000
7 Funburgh 2005 700000
8 Sadville 2005 26000
9 Angry Town 2005 155000
10 Rageopolis 2005 55000
11 Happy City 2010 1100000
12 Funburgh 2010 750000
13 Sadville 2010 24000
14 Angry Town 2010 165000
15 Rageopolis 2010 80000
16 Happy City 2015 1200000
17 Funburgh 2015 775000
18 Sadville 2015 26000
19 Angry Town 2015 170000
20 Rageopolis 2015 110000
21 Happy City 2020 1350000
22 Funburgh 2020 825000
23 Sadville 2020 28000
24 Angry Town 2020 165000
25 Rageopolis 2020 1750000

Now in the above example, my intent was to reshape the data in a way that allowed you to “watch” a data
frame be reshaped. Luckily, there are functions in the tidyr package that make these kinds of operations
much easier.

6

gather()
For data like population:
population

A tibble: 5 x 6
city `2000` `2005` `2010` `2015` `2020`
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Happy City 825000 950000 1100000 1200000 1350000
2 Funburgh 625000 700000 750000 775000 825000
3 Sadville 25000 26000 24000 26000 28000
4 Angry Town 125000 155000 165000 170000 165000
5 Rageopolis -99 55000 80000 110000 1750000

The gather() operation requires that you specify, in this order:

• data object, the name of the object with the data
• key’s name, the name of the variable that captures what is being conveyed in the column labels
• values’ name, the name of the variable that captures what is being measured in the data table’s cells
• unit variable demarcated by a minus sign. This should correspond to the variable name in the original

data table that contains the unit identifier.
library(tidyr) #Don't forget to load the package
pop.tidy <- gather(population, year, population, -city)
pop.tidy

A tibble: 25 x 3
city year population
<chr> <chr> <dbl>
1 Happy City 2000 825000
2 Funburgh 2000 625000
3 Sadville 2000 25000
4 Angry Town 2000 125000
5 Rageopolis 2000 -99
6 Happy City 2005 950000
7 Funburgh 2005 700000
8 Sadville 2005 26000
9 Angry Town 2005 155000
10 Rageopolis 2005 55000
... with 15 more rows

7

spread()
Sometimes, your units are spread over multiple rows, with different rows representing different variable scores.
For example, consider this data table:
schools

school variable year score
1 George Washington students 2015 1233
2 George Washington teachers 2015 94
3 George Washington administrators 2015 21
4 George Washington students 2016 1310
5 George Washington teachers 2016 93
6 George Washington administrators 2016 23
7 JFK students 2015 725
8 JFK teachers 2015 15
9 JFK administrators 2015 9
10 JFK students 2016 771
11 JFK teachers 2016 17
12 JFK administrators 2016 8
13 Abraham Lincoln students 2015 301
14 Abraham Lincoln teachers 2015 14
15 Abraham Lincoln administrators 2015 9
16 Abraham Lincoln students 2016 291
17 Abraham Lincoln teachers 2016 11
18 Abraham Lincoln administrators 2016 6
19 Harry Truman students 2015 3200
20 Harry Truman teachers 2015 130
21 Harry Truman administrators 2015 27
22 Harry Truman students 2016 3290
23 Harry Truman teachers 2016 141
24 Harry Truman administrators 2016 28

We want to tidy the data so that each row represents all of the data associated with one unit-time combination
(here, school and year), with a separate column for the student and teacher counts. Input the following
options:

• data object
• key column, the column with the variable labels
• values column, column with the values

school.tidy <- spread(schools, variable, score)
school.tidy

school year administrators students teachers
1 Abraham Lincoln 2015 9 301 14
2 Abraham Lincoln 2016 6 291 11
3 George Washington 2015 21 1233 94
4 George Washington 2016 23 1310 93
5 Harry Truman 2015 27 3200 130
6 Harry Truman 2016 28 3290 141
7 JFK 2015 9 725 15
8 JFK 2016 8 771 17

8

Labeling
Labelling involves changing the column names on a data table. We did it above, but present it formally here.

Recall that the names() operation calls up the names of an object’s elements. For example, with the object
school:
names(schools)

[1] "school" "variable" "year" "score"

If we want to change the column names:
names(schools) <- paste(c("schools", "person", "year", "value"))

And now the table has new names:
head(schools,3)

schools person year value
1 George Washington students 2015 1233
2 George Washington teachers 2015 94
3 George Washington administrators 2015 21

To rename a specific variable in a table:
names(schools)[2] <- paste("variable")
head(schools, 3)

schools variable year value
1 George Washington students 2015 1233
2 George Washington teachers 2015 94
3 George Washington administrators 2015 21

Recoding
Rescaling Values
One task in data management is to recode errors in the data For example, imagine we had a data set
measuring the heights and weights of five men. Height is measured in centimeters, and weight is measured in
pounds:
measures <- data.frame(names=c("Jim", "Billy", "Tom", "Joe", "Tony"),

height=c(181, 190, 190, 178, 165),
weight=c(179, 145, 230, 156, 5))

measures

names height weight
1 Jim 181 179
2 Billy 190 145
3 Tom 190 230
4 Joe 178 156
5 Tony 165 5

9

Let’s say we want to convert the weight measurement from centimeters to inches. An inch is 2.54 cm. We
recode the height mesaure using a simple arithmetic operation:
measures$height <- measures$height/2.54
measures

names height weight
1 Jim 71.25984 179
2 Billy 74.80315 145
3 Tom 74.80315 230
4 Joe 70.07874 156
5 Tony 64.96063 5

Changing Values Based on Logical Tests
The data says Tony is 5 lbs heavy. That is most likely an error. We need to recode that variable as missing.

Let us create a rule that recodes anyone who is less than 60cm tall as missing. We can do that using the
ifelse() command, which lists a logical test, then the variable’s replacement value if the test is true, then the
replacement value if it is false:
measures$weight <- ifelse(measures$weight < 80, NA, measures$weight)
measures

names height weight
1 Jim 71.25984 179
2 Billy 74.80315 145
3 Tom 74.80315 230
4 Joe 70.07874 156
5 Tony 64.96063 NA

I use ifelse() to recode missing data.

Creating New Variables from Existing Data
We want to calculate our respondents’ body mass index (BMI), which is their weight (in kg) over their height
(in squared cm).
measures$bmi <- (measures$weight * 0.45) / ((measures$height*2.54)/100)^2
measures

names height weight bmi
1 Jim 71.25984 179 24.58716
2 Billy 74.80315 145 18.07479
3 Tom 74.80315 230 28.67036
4 Joe 70.07874 156 22.15629
5 Tony 64.96063 NA NA

10

Creating Categories from Continuous Data
The cut() function can be used to create groupings based on continuous data. For example, if we wanted to
classify our group of men into underweight (BMI<18.5) or overweight (BMI>25):
measures$weightstatus <- cut(measures$bmi, c(0,18.5,25,99),

labels=c("Underweight","Normal Weight","Overweight"))
measures

names height weight bmi weightstatus
1 Jim 71.25984 179 24.58716 Normal Weight
2 Billy 74.80315 145 18.07479 Underweight
3 Tom 74.80315 230 28.67036 Overweight
4 Joe 70.07874 156 22.15629 Normal Weight
5 Tony 64.96063 NA NA <NA>

When a Character Intrudes into Numeric Data
Here’s a problem that is often a pain for me. When you load a data table into R, the program guesses variable
types: numbers, characters, or logical (TRUE/FALSE). Sometimes, miscoded data causes R to misread your
data. For example, we load the CSV file “sales_data.csv” attached to this lesson:
sales <- read.csv("sales_data.csv")
sales

Team Sales Profit
1 New York 850000 95000
2 Philadelphia 455000 100100
3 Boston 550000 134000
4 Toronto 315000 69300F
5 Montreal 275000 63900

If you summarize the variable, you find that R interpreted the sales$Profit as a factor (a multichotomous
variable). One of the numbers in that variable had an alphabetical character.
summary(sales)

Team Sales Profit
Boston :1 Min. :275000 100100:1
Montreal :1 1st Qu.:315000 134000:1
New York :1 Median :455000 63900 :1
Philadelphia:1 Mean :489000 69300F:1
Toronto :1 3rd Qu.:550000 95000 :1
Max. :850000

11

If Data Entry Error

If this is primary data, then the alphabetical character may be a data entry mistake. This may also be
the case with secondary data if the codebook does not mention the inclusion of alphabetical variables in
numerical variables. Under such circumstances, you might choose to simply recode as missing all entries with
alphabetical characters. This is done by:
sales$Profit <- as.numeric(as.character(sales$Profit))
sales

Team Sales Profit
1 New York 850000 95000
2 Philadelphia 455000 100100
3 Boston 550000 134000
4 Toronto 315000 NA
5 Montreal 275000 63900

The data now reads as numeric:
summary(sales)

Team Sales Profit
Boston :1 Min. :275000 Min. : 63900
Montreal :1 1st Qu.:315000 1st Qu.: 87225
New York :1 Median :455000 Median : 97550
Philadelphia:1 Mean :489000 Mean : 98250
Toronto :1 3rd Qu.:550000 3rd Qu.:108575
Max. :850000 Max. :134000
NA's :1

If It’s a Footnote

If the data is a footnote, and you are assured that you can treat the numeric portion of that alphanumeric
entry as the true variable value, then you may wish to extricate it by using gsub(), a function that replaces
characters within a cell. Recall that our issue is a stray “F” in sales$Profit:
sales <- read.csv("sales_data.csv")
sales$Profit <- as.numeric(gsub("F", "", as.character(sales$Profit)))
summary(sales)

Team Sales Profit
Boston :1 Min. :275000 Min. : 63900
Montreal :1 1st Qu.:315000 1st Qu.: 69300
New York :1 Median :455000 Median : 95000
Philadelphia:1 Mean :489000 Mean : 92460
Toronto :1 3rd Qu.:550000 3rd Qu.:100100
Max. :850000 Max. :134000

Reducing Data Tables
There may be times in which you want to remove data from a table to make it easier to use. Dropping
variables involves removing entire variables from a data set. Subsetting occurs when we remove observations
with particular values on a variable.

12

Dropping Variables
There are two useful ways to trim variables off a data set. I usually do it by column numbers. For example,
if I wanted to remove the sales$Sales variable from the sales set. I can do it by asking R to retain columns:
sales[,c(1,3)]

Team Profit
1 New York 95000
2 Philadelphia 100100
3 Boston 134000
4 Toronto 69300
5 Montreal 63900

Or I can ask it to remove a column by adding a minus sign before the column number:
sales[,-c(2)]

Team Profit
1 New York 95000
2 Philadelphia 100100
3 Boston 134000
4 Toronto 69300
5 Montreal 63900

You can also use the select() function from the dplyr function. With that command, you first list the data
object, then column names you want to retain:
library(dplyr)

Warning: package 'dplyr' was built under R version 3.5.3
select(sales, Team, Profit)

Team Profit
1 New York 95000
2 Philadelphia 100100
3 Boston 134000
4 Toronto 69300
5 Montreal 63900

Or you can use the minus sign to have observations dropped:
select(sales, -Sales)

Team Profit
1 New York 95000
2 Philadelphia 100100
3 Boston 134000
4 Toronto 69300
5 Montreal 63900

13

Dropping Observations
In situations in which you want to remove observations from a data set, use the subset() operation. In this
command, you specify the data frame you want to use, and the criteria for keeping an observation in the
subset. So, for example, to keep only observations with profits over $90,000 from the object sales:
subset(sales, Profit > 90000)

Team Sales Profit
1 New York 850000 95000
2 Philadelphia 455000 100100
3 Boston 550000 134000

Saving
Above, we showed that you can write data as a CSV using the read.csv() function. R also has some
proprietary data formats, which allow you to store entire R objects. You can save it using the saveRDS()
function:
saveRDS(sales, file = "sales data.RDS")

And call it up with readRDS().
sales <- readRDS("sales data.RDS")

14

	About Data Wrangling
	What is Data Wrangling?
	Steps Involved
	Starting Our Session

	Loading the Data
	CSV Files
	Excel Spreadsheets
	From Another Analysis Program (Stata, SAS, SPSS)
	Pulling Data from the Web

	Tidying the Data
	What is ``Tidy'' Data
	Strategize Your Tidying Operations
	gather()
	spread()

	Labeling
	Recoding
	Rescaling Values
	Changing Values Based on Logical Tests
	Creating New Variables from Existing Data
	Creating Categories from Continuous Data
	When a Character Intrudes into Numeric Data

	Reducing Data Tables
	Dropping Variables
	Dropping Observations

	Saving

