Assessing MLB Batters in 2023

Joseph Cohen

2024-02-06

This document provides a walk-through of a simple, cursory data analysis in an applied context. The walk-through is designed to convey the general tasks involved in creating simple analytics-based informational products in an R-based workflow. Students are invited to follow along with what I do, and manipulate my code to get their own results.

Pre-Analysis

Scenario

We have been approached by the New York Mets to assess which are the best batters in Major League Baseball. They feel like they can win the league championship with one or two more elite batters, but they do not know whom to pursue in a trade or free agent signing

Project Conception

Although the task seems straightforward, the problem is that we do not have clear, uncontroversial answers about which player would be the best for the New York Mets. Hitters are good at different things, and we do not know what kind of hitter would be best for the Mets specifically. I think that our best strategy is to inform the Mets baseball professionals about who did a good job in different aspects of batting, and decide who is best for that particular team in conversation with others.

Research Design

I propose that, as a team, each of us selects an indicator from 2023 seasonal batting data to get ideas on who did well at particular facets of hitting. We will look at leaderboards to determine who did best and worst among qualified hitters.

Data Wrangling

Data Acquisition

The data is stored on the Excel sheet provided in class. To import data from the first worksheet of this Excel workbook:

```
# Import data from Excel
data <- read_xlsx("MLB 2023 Batting Statistics.xlsx", sheet = 1)
# Look at first few rows and columns
head(data, 5)
## # A tibble: 5 x 18
## Name Team G PA AVG R HR RBI OBP SLG SB K_pct BB_pct
## <chr> <chr> <dbl> <dbl>
## 1 Rona~ ATL 159 735 0.337 149 41 106 0.416 0.596 73 0.114 0.109
## 2 Mook~ LAD 152 693 0.307 126 39 107 0.408 0.579 14 0.154 0.139
## 3 Fred~ LAD 161 730 0.331 131 29 102 0.410 0.567 23 0.166 0.0986
## 4 Matt~ ATL 162 720 0.283 127 54 139 0.389 0.604 1 1 0.232 0.144
## 5 Shoh~ LAA 135 599 0.304 102 44 95 0.412 0.654 20 0.239 0.152
## # i 5 more variables: WPA <dbl>, WAR <dbl>, Earned <dbl>, PlayerId <dbl>,
## # MLBAMID <dbl>
```

There are not major data cleaning issues for you to perform, as I pre-cleaned the data.
The data we will consider include:

- Name (Name): Player's name
- Team (Team): Player's team
- Games (G): Number of games in 2023 in which player appeared
- Plate Appearances (PA): Number of time in 2023 that player attempted an at bat
- Batting Average (AVG): Percent of times in which a plate appearance results in a hit
- Runs (R): Number of times that player cross home plate to score a point for team
- Home Runs (HR): Number of times player it it out of the part to score themselves and all players on base instantly.
- Runs Batted In (RBI): Number of runs scored due to player's at bats
- On-Base Percentage (OBP): Percent of time that plate appearances result in player reaching base safely
- Slugging Average (SLG): Average number of bases that a player covers by hit, walk or some other means of hitting the ball.
- Stolen Bases (SB): Number of times player advance base by "stealing" base
- Strikeout Percentage (K_pct): Percent of plate appearances that result in strikouts
- Walk Percentage (BB__pct): Percent of plate appearances that result in walks.
- Win Probability Added (WPA): Player's name
- Wins Above Replacement (WAR): Estimate of how many additional wins a team will receive by playing this player versus a low-level MLB player.
- Earnings (Earned): Estimates of money delivered to club by virtue of playing performance. In millions of dollars.

Analysis

So who was good at what? Let's focus on the variable strikeout percentage. Strikeouts are bad because there is no possibilty of reaching base or advancing due to a defensive player error or fielder's choice.

What counts as a good or bad score? Let's look at the distribution of the statistic:

```
summary(data$K_pct)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.05511 0.17061 0.20976 0.20788 0.23853 0.32700
```

Let's make ranked lists. This is how we get the top 20 performances in terms of strikeout percentage:

```
# Sort the data by Strikeout Percentage in ascending order to get those with the lowest K%
data <- data[order(data$K_pct),]
# Select the top 20 players with the lowest strikeout percentages
head(data[,c("Name", "Team", "K_pct")], 20)
## # A tibble: 20 x 3
## Name Team K_pct
## <chr> <chr> <dbl>
## 1 Luis Arraez MIA 0.0551
## 2 Jeff McNeil NYM 0.100
## 3 Keibert Ruiz WSN 0.103
## 4 Steven Kwan CLE 0.104
## 5 José Ramírez CLE 0.106
## 6 Ronald Acuña Jr. ATL 0.114
## 7 Alex Bregman HOU 0.120
## 8 Nico Hoerner CHC 0.121
## 9 Kyle Tucker HOU 0.136
## 10 Masataka Yoshida BOS 0.140
## 11 Andrew Benintendi CHW 0.143
## 12 Gleyber Torres NYY 0.146
## 13 Marcus Semien TEX 0.146
## 14 Vladimir Guerrero Jr. TOR 0.147
## 15 Adley Rutschman BAL 0.147
## 16 Alec Bohm PHI 0.154
## 17 Mookie Betts LAD 0.154
## 18 Alex Verdugo BOS 0.154
## 19 Dominic Smith WSN 0.155
## 20 Mark Canha - - - 0.156
```

Here are the worst performers:

```
# Sort the data by Strikeout Percentage in ascending order to get those with the lowest K%
data <- data[order(-data$K_pct),]
# Select the top 20 players with the lowest strikeout percentages
head(data[,c("Name", "Team", "K_pct")], 20)
## # A tibble: 20 x 3
## Name Team K_pct
## <chr> <chr> <dbl>
## 1 Brent Rooker OAK 0.327
## 2 Jack Suwinski PIT 0.322
## 3 James Outman LAD 0.319
```

$\left.\begin{array}{llll}\text { \#\# } & 4 & \text { Ryan McMahon } & \text { COL } \\ \text { \#\# } & 5 & 0.316 \\ \text { \#\# } & 6 & \text { Eugenio Suárez } & \text { SEA }\end{array}\right) 0.308$

To get Max Muncy's information

```
data[data$Name == "Max Muncy", ]
## # A tibble: 1 x 18
## Name Team G PA AVG R HR RBI OBP SLG SB K_pct BB_pct
## <chr> <chr> <dbl> <dbl>
## 1 Max ~ LAD 135 579 0.212 95 36 105 0.333 0.475 1 1 0.264 0.147
## # i 5 more variables: WPA <dbl>, WAR <dbl>, Earned <dbl>, PlayerId <dbl>,
## # MLBAMID <dbl>
```

To only look at some of Max Muncy's data:

```
data[data$Name == "Max Muncy", c("Name", "Team", "AVG", "HR", "K_pct")]
## # A tibble: 1 x 5
## Name Team AVG HR K_pct
## <chr> <chr> <dbl> <dbl> <dbl>
## 1 Max Muncy LAD 0.212 36 0.264
```

To look at all of the Mets:

```
subset(data, Team == "NYM")
## # A tibble: 4 x 18
## Name Team G PA AVG R HR RBI OBP SLG SB K_pct BB_pct
## <chr> <chr> <dbl> <dbl>
## 1 Pete~ NYM 154 658 0.217 92 46 118 0.318 0.504 4 0.229 0.0988
## 2 Bran~ NYM 152 682 0.274 89 24 68 0.363 0.466 3 0.214 0.109
## 3 Fran~ NYM 160 687 0.254 108 31 98 0.336 0.470 31 0.199 0.0961
## 4 Jeff~ NYM 156 648 0.270 75 10 55 0.333 0.378 10 0.100 0.0602
## # i 5 more variables: WPA <dbl>, WAR <dbl>, Earned <dbl>, PlayerId <dbl>,
## # MLBAMID <dbl>
```

To look at players with K_pct that are below 15%

```
subset(data, K_pct < 0.13)
## # A tibble: 8 x 18
## Name Team G PA AVG R HR RBI OBP SLG SB K_pct
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
```

```
## 1 Nico Hoern~ CHC 150 688 0.283 98 9 0 68 0.346 0.383 43 0.121
## 2 Alex Bregm~ HOU
## 3 Ronald Acu~ ATL
## 4 José Ramír~ CLE
## 5 Steven Kwan CLE
## 6 Keibert Ru~ WSN
## 7 Jeff McNeil NYM
## 8 Luis Arraez MIA 147 617 0.354 7
## # i 6 more variables: BB_pct <dbl>, WPA <dbl>, WAR <dbl>, Earned <dbl>,
## # PlayerId <dbl>, MLBAMID <dbl>
```

Here is a function to get a specific player's percentile score in strikeout percentage:

```
get_strikeout_percentile <- function(data, playerName, teamName) {
    # Filter data for the specific player
    player_data <- subset(data, Name == playerName & Team == teamName)
    # Check if player data exists
    if(nrow(player_data) == 0) {
        return(paste("No data found for", playerName, "in", teamName))
    }
    # Calculate the player's strikeout percentage rank among all players
    player_rank <- sum(data$K_pct < player_data$K_pct) + 1
    # Calculate the percentile
    player_percentile <- (player_rank / nrow(data)) * 100
    # Return the player's percentile score
    return(paste(playerName, "from", teamName, "is in the", round(player_percentile, 2), "percentile for 
}
```

get_strikeout_percentile(data, "Max Muncy", "LAD")
\#\# [1] "Max Muncy from LAD is in the 85.71 percentile for strikeout percentage."

So let's get started figuring out who is good or bad to give our clients names to consider.

