
Getting Started

Joseph Nathan Cohen
Department of Sociology

Program in Data Analytics and Applied Social Research
City University of New York, Queens College

www.josephnathancohen.info

January 29, 2020

Contents
Important Tasks 1

Preliminary Comment on Teaching & Learning Philosophy 2

Introducing R and RStudio 3
Install the Programs . 3
Learn the RStudio Interface . 3
Updating R . 4
Getting Help . 4

Markdown Documents 5
Start a Markdown Document . 5
Writing and Coding in a Markdown Document . 5

Starting Your Script 5
Clear the Memory . 5
Setting a Working Directory . 7
Packages . 7

Basic Operations in R 8
Arithmetic . 8
Creating and Manipulating Objects . 8
Vectors . 9
Data Frames . 9
Lists . 12

Important Tasks
Your checklist of things to do:

• Ensure that you are in the right class,
• Ensure that you are registered for this class,
• Access the course readings,
• Review the course syllabus,
• Ensure that you have sent me your email address to be included on the class roster,

1

• Ensure that you have been invited to the class’s DataCamp team. Only students who have sent me
their email addresses have been added,

• Make sure you have RStudio and R installed on your personal device,
• Get started with your first DataCamp course

Preliminary Comment on Teaching & Learning Philosophy
In this course, my goal is to ensure that everyone who gets a Master’s degree with us has demonstrated the
ability to implement and make sense of a reasonably wide array of advanced quantitative analytics operations.
If I do my job right, then our graduates will:

• Be reasonably fluent in R, the industry-standard statistical programming platform in the field of data
science,

• Have a level of statistical analysis skills that clearly and meaningfully surpass what is offered by leading
social science degree programs (in any discipline, from any school)

• Have a level of analytical proficiency that compares well with the typical social science academic (who
is not a quantitative methodology specialists),

• Have developed the capacity to serve as the quantitative expert in any environment,
• Have developed the capacity to problem-solve and develop their skills after leaving campus.

More Like Learning a Language or Sport. Learning to do data anlaysis is a lot like learning a language
or a sport. It’s not as if I someone can take you aside for two hours, teach you a list of vocabulary words and
a grammatical conjugation scheme, and then you’re off to have French conversations with strangers on the
streets of Paris. It’s more like learning ice skating – you spend a few weeks feeling tense, awkward and afraid
of falling. After a few more weeks, you make your peace with it. Give it a few months, and you are able to
do fun things and try things out, and then it becomes fun. So students should embrace that awkward period,
and not get too fixated and frustrated that they aren’t learning things immediately. You will remember how
to do something after you get sick of making same mistake, or forgetting same thing, for the 20th time.1

Getting Your Reps. One half of your grade is given for completing DataCamp modules. I consider this
part of the course to be equivalent to training or practice for an athlete. Just as a swimming trainer might
require an athlete to practice their strokes for several hours a week at the pool, I ask you to practice your
coding on DataCamp. I promise that anyone who completes all of these courses will be happy to have done
so by the semster’s end.

Reading. There’s a ton of reading. The only required reading are my class notes. The additional reading
is there in case you want to take a deeper dive (or so that you have something to read if you want to
come back to this stuff in the future.) The only thing I care about is (1) completed DataCamp courses, (2)
quality assignment submissions, and (3) confidence that you understand what we are doing and will perform
competently in the field.

Learn to Learn Independently. One of my goals is that you become an independent learning in analytics.
For this reason, I am not a hand-holder. If you have a question, try to solve it independently first via Google.
That’s how I do it. That’s how everyone does it. I recommend StackOverflow as a source of answers. If your
problem is particularly complicated, then come visit me during office hours or by appointment.

How to Study? There is no substitute for reading the class notes, doing the DataCamp exercises, and
making an effort to deliver polished assignments. Besides doing these basic things, I recommend the following:

• Put all of the class notes and handouts into a binder. Get a hole punch so that they can be included in
the binder. Put a divider for each week of class materials.

• During class and while you are doing your assignments, take notes on three hole-punched paper. Save
those notes in your binder.

1Side note: this view on learning analytics is partly why I force students to solve their own problems using StackOverflow,
etc. instead of immediately answering their programming questions. It incentivizes investing the mental energy into memorizing
how to perform an operation.

2

• The best notes have explanations and recipes for performing operations that are in your own words.
Sometimes, material seems obvious when you are first learning it, but then your memory fades. Good
notes capture as much as possible during that moment of clarity, so that you can recall later.

Introducing R and RStudio
This semester, most of our work will be done with two programs, R and RStudio. R is an open-source
platform for analyzing statistics. RStudio is a user interface for R. We use R through RStudio. RStudio
makes it easier to use R (and adds some functionalities as well).

Install the Programs
You can download these programs from the Internet:

• Download R from the Comprehensive R Archive Network at https://cran.r-project.org/.
• Download RStudio from the R Studio web site at https://www.rstudio.com/.

32-bit or 64-bit version?. Your choice depends on your computer’s CPU. If you have a newer computer,
chances are that it has a 64-bit processor. For more information on how to determine your system type, visit
this helpful page at http://www.computerhope.com/issues/ch001121.htm

Learn the RStudio Interface
The RStudio interface has several panes (see Figure 1 above).

Figure 1: The RStudio Window

• Source. Programs that you author to run in R. It is where you write and save your code. Similar to
the Do File Editor in Stata.

• Console. Displays the results of processed R commands. Similar to Results window in Stata.
• Environment. An environment is a set of associated objects (data, functions, etc.) that are loaded

into R. For more on environments, click here

3

https://cran.r-project.org/
https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/
http://www.computerhope.com/issues/ch001121.htm
http://www.computerhope.com/issues/ch001121.htm
http://www.computerhope.com/issues/ch001121.htm
http://adv-r.had.co.nz/Environments.html

• History. A list of commands that have been run in your R session.
• Files. Lists files in a folder.
• Plots. Shows graphs that you’ve created.
• Packages. Packages are libraries of commands. You can install and load packages in this window.

For more on packages, see below.
• Help. For information on packages and commands.
• Viewer. Shows local web content.

Updating R
R updates regularly. You can update your version of R through RStudio’s console (see below) by using this
code:
install.packages("installr")
library(installr)
updateR()

Getting Help
Learning to do statistical analyses in R is like learning a foreign language. You can’t read a French-English
dictionary and immediately be fluent in French. Likewise, and you can’t read a list of R commands and be
fluent in R. It takes practice. You have to practice things over and over again until you’ve memorized them.
That is how you will learn.

At first, the learning process is a struggle. You will constantly have to look up commands, and you’ll be
frustrated at how difficult it is to do things that you can already do on Excel or Stata. Honestly, the first few
weeks R are brutal.

Do not be discouraged if you have to look up EVERYTHING when you are getting started. It’s
like learning a language. Once you look something up enough times, you’ll have it memorized.
Once you look up enough commands enough times, you’ll have a basic grasp of R programming

As you get the ball rolling, keep in mind that you have many resources to help.

1. Your class notes and reading assignments. That’s what they’re for.
2. O’Reilly Books. If the assigned readings aren’t working out for you, look into O’Reilly books. They’re

reasonably priced and pretty good, straightforward “how to” books. I recommend the R Cookbook by
Paul Teetor, R in a Nutshell from Joseph Adler, and R Graphics Cookbook by Winston Chang. They’re
all great.

3. Google. There’s lots of help online. For example, if you want to know how to get the mean value of a
variable, then (1) go to Google and (2) do a query along the lines of “get the mean of a variable in
R”. I did this query while writing these notes. The answer was in the first query return. If the answer
isn’t in the first few returns or on the first page of your query, try scrolling down or looking at page 2.
I recommend checking out any Google returns from the following sites: Stack Overflow, R-Bloggers,
inside-R, and any university sites.

4. R’s Help Function. The answer to your question might be in R’s internal help functions. In the
console, type two question marks (??) and the keyword. For example:

??mean

This will bring up a list of possibly useful commands in the RStudio Help window.

If you know the name of the command and want to call up the help page directly, only use one question mark:
?mean

4

Markdown Documents
Scripts are prewritten sequences of R code, which can be executed as a group. Stata *.do files are an
example of a script. Scripts are useful to track and execute extended sequences of code. To start a script,
click File > New File > R Script

To add notes to your script that will not run, place a hashtag (#) before the line you’re writing. Lines
without hashtags will be run as part of a script.
put a hashtag before a line to create a comment
comments will not be run in R

Markdown is a kind of script that allows you to conduct analyses and create reports as part of the
same document. It is like a Word document and a do file rolled into one. I prepared this document in
Markdown.ˆ[Creating PDF Documents Using Markdown. If you want to produce PDF documents
(like this one) using R Markdown, you need to install additional programs to help RStudio complete the
task. I recommend installing MiKTeX, which can be downloaded at http://miktex.org/download. For an
illustrated tutorial, see Soren L. Kristiansen’s article on Medium.[ˆ10Note: Restart RStudio after installing
MiKTeX.]

Start a Markdown Document
1. On the menu bar, click “File” > “New File” > “R Markdown. . . ”
2. A popup window will come up. Select “DOcument” in the left panel of the pop-up window. In the

right window, enter a title and your name, and choose which type of document you wish to produce
(see footnote for setting up PDF printing)

3. A generic Markdown document will appear. You can edit it to do whatever you want.

Writing and Coding in a Markdown Document
A Markdown document allows you to perform statistical analysis and reporting in the same document. Let’s
try playing with the reporting function. In your document, write the following lines:
Introduction
What does our baseball team need to do in order to win more games? This analysis
suggests that batting average, low strikeouts, and premium players are related with
a team's winning percentage.

Then click the “Run All” button, depicted below (or, on a PC, hit CTRL + ALT + R). If you did it correctly,
you should see a Microsoft Word document pop up with a title, your name, the date, an “Introduction”
header, and the passage you typed above. You can do much more in terms of report writing. Check out the
Markdown Cheat Sheet for more. You can also download these notes in Markdown to see what I did. But we
are going to quickly focus on coding.

In Markdown, you code in chunks. Chunks tell RStudio to transition from document preparation to R coding.
When you close the chunk, RStudio reverts to document prreparation. Figure 2 (below) depicts a chunk that
begins on line 6 and ends at line 12.

Note that you can also insert Python chunks into a Markdown document with some setup.

Starting Your Script
Clear the Memory
I always start my Markdown files with the following commands, which clear R’s memory:
rm(list=ls())
gc()

5

http://miktex.org/download
http://miktex.org/download
https://medium.com/@sorenlind/create-pdf-reports-using-r-r-markdown-latex-and-knitr-on-windows-10-952b0c48bfa9#.b0khcxsa2
https://blog.rstudio.com/2018/03/26/reticulate-r-interface-to-python/

Figure 2: A Markdown R Chunk

6

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 401173 21.5 841297 45 609057 32.6
Vcells 747830 5.8 8388608 64 1606118 12.3

When you put “include = F” in the code to open a chunk, you are telling R not to publish the results of that
operation in the report.

Setting a Working Directory
A working directory is the data that stores the files with which R will be working and those that R produces
over the course of an analysis. Setting a working directory is an important part of writing an R script.

To set the working directory, use the setwd() command. Just cut and paste the path to the directory in
which you are working into the command. Note that you have to reverse the slashes in the path - it won’t
work if you cut and paste without replacing the slashes.

To set this folder as the working directory:
#directory <- "C:/Users/jcohen/Dropbox/Teaching/SOC 712/Module 1"
directory <- "E:/Dropbox/Teaching/SOC 712/Module 1"
setwd(directory)

Note the quotation marks and that I changed the slashes (from the one above the “enter” key to the one
beside the lower-right “shift” key on my keyboard)

To see the files in your working directly, use the list.files() command:
list.files()

Packages
Unlike Stata, R doesn’t load up all of its commands when you first open the program. It only loads up basic
commands. You will have to ask R to load up the libraries of commands (called “packages”) before you use
them.

Different packages do different things. For example, dplyr has commands that help you manipulate data.
Amelia is for missing data imputation. ggplot2 is a package for graphing. There are many packages. For
more on packages, click here

RStudio lists the installed packages under the “Packages” tab. You can install more packages by clicking the
“Install” button in that tab.

Install a Package

To install a package for the first time, use the [install.packages()] command.

For example, to install the ggplot2 package:
install.packages("ggplot2")

Troubleshooting. If you get an error related to “trying to use CRAN without setting a mirror”, you may
have to specify a respository from which to download the package:
install.packages("ggplot2",repos="http://cran.rstudio.com/")

You can set your respository in RStudio through Tools > Global Options. . . > Packages

Loading a Package

To load a package, use the library() command.

7

https://cran.r-project.org/web/packages/

For example, to load the ggplot2 package:
library(ggplot2)

Basic Operations in R
Arithmetic
R performs basic calculations as in other commonly-used programs. It follows the PEDMAS order of
operations, in which operations in parentheses are calculated first, followed by division and multiplication,
then addition and subtraction, from left to right.
2+2

[1] 4
3*5

[1] 15
10ˆ2

[1] 100
log(10)

[1] 2.302585
exp(2.302585)

[1] 9.999999
5+5/2

[1] 7.5
(5+5)/2

[1] 5

Sequences

For simple sequences, you can use two numbers separated by a colon:
2:5

[1] 2 3 4 5

For more complicated sequences, use seq() command. In that command, you designate (1) the beginning
and (2) end of the sequence, then (3) the size of each step. For more, type ?seq in the console. For example:
seq(0,100,10)

[1] 0 10 20 30 40 50 60 70 80 90 100

Creating and Manipulating Objects
You can assign data to objects using an arrow (the left triangular bracket followed by a dash (<-)) to assign
numbers or text to an object or variable name. For example, I want to assign the value 2 to the letter z:
z <- 2
z*10

[1] 20

8

Note that the object “z” is listed in your environment tab once you have created it. To get rid of the object,
use the rm() command, as below:
rm(z)

Vectors
You can assign multiple elements to a variable. To do that, you list the objects in a collector operator c().
This operator tells R that you are presenting a list:
months <- c("January","February","March","April","May","June","July","August",

"September","October","November","December")
months

[1] "January" "February" "March" "April" "May" "June"
[7] "July" "August" "September" "October" "November" "December"
days.in.month <- c(31,28,31,30,31,30,31,31,30,31,30,31)
days.in.month

[1] 31 28 31 30 31 30 31 31 30 31 30 31

When you apply a calculation to a variable with multiple elements, the calculation will be performed on each
element. For example:
days.in.month * 100

[1] 3100 2800 3100 3000 3100 3000 3100 3100 3000 3100 3000 3100

You can create new objects based on old ones:
hours.in.month <- days.in.month * 24
hours.in.month

[1] 744 672 744 720 744 720 744 744 720 744 720 744

Data Frames
Data frames are rectangularized tables of data. They are the kinds with which we typically work in statistics.

Create a Frame from Vectors

You can collect these vectors2 into the kind of data table with which you worked in Stata. Here, each row is
a subject, and each column is a variable. To do that, we use the data.frame() operation, which tells R we
are creating a data table. For example:
calendar <- data.frame(months, days.in.month, hours.in.month)
calendar

months days.in.month hours.in.month
1 January 31 744
2 February 28 672
3 March 31 744
4 April 30 720
5 May 31 744
6 June 30 720
7 July 31 744
8 August 31 744
9 September 30 720

2Vectors are these objects with multiple elements. Vectors have the same type of data (e.g., numbers, strings)

9

10 October 31 744
11 November 30 720
12 December 31 744

View Top of a Data Frame

For big tables, you can look at the first few rows by using the head() command. To see the first three rows
of the data frame “calendar”:
head(calendar, 3)

months days.in.month hours.in.month
1 January 31 744
2 February 28 672
3 March 31 744

See a Data Frame’s Column Names

Find the names of the variables in the data frame using the names() command:
names(calendar)

[1] "months" "days.in.month" "hours.in.month"

Calling Columns from a Data Frame

You can call up specific variables in the data frame using a dollar sign ($) designator:
calendar$hours.in.month

[1] 744 672 744 720 744 720 744 744 720 744 720 744
hours <- calendar$hours.in.month
hours

[1] 744 672 744 720 744 720 744 744 720 744 720 744

You can add variables to a data frame using this same designator:
calendar$month.num <- 1:12
head(calendar)

months days.in.month hours.in.month month.num
1 January 31 744 1
2 February 28 672 2
3 March 31 744 3
4 April 30 720 4
5 May 31 744 5
6 June 30 720 6

To call particular elements of a data frame, use a square bracket with a row then column designation. To call
up the second row:
calendar[2,]

months days.in.month hours.in.month month.num
2 February 28 672 2

To call out the second column:
calendar[,2]

10

[1] 31 28 31 30 31 30 31 31 30 31 30 31

To call out the second row at the second column:
calendar[2,2]

[1] 28

To call out the second through fifth rows:
calendar[2:5,]

months days.in.month hours.in.month month.num
2 February 28 672 2
3 March 31 744 3
4 April 30 720 4
5 May 31 744 5

Summarize Variables in a Data Frame

You can get summary information or perform operations on data frame columns. For example, to get the
mean and median number of hours in a month, plus the standard deviation:
mean(calendar$hours.in.month)

[1] 730
median(calendar$hours.in.month)

[1] 744
sd(calendar$hours.in.month)

[1] 21.60808

Pick Out a Subset

To select the observations in the data frame “calendar” in which “days.in.month” is equal to 31subset
subset(calendar, days.in.month == 31)

months days.in.month hours.in.month month.num
1 January 31 744 1
3 March 31 744 3
5 May 31 744 5
7 July 31 744 7
8 August 31 744 8
10 October 31 744 10
12 December 31 744 12

Sort by a Variable

To sort by “hours.in.month” variable:
#order() returns the vector positions in ascending or descending rank
order(calendar$hours.in.month)

[1] 2 4 6 9 11 1 3 5 7 8 10 12
#Use it to call out the order of rows in a data frame:
calendar[order(calendar$hours.in.month),]

11

months days.in.month hours.in.month month.num
2 February 28 672 2
4 April 30 720 4
6 June 30 720 6
9 September 30 720 9
11 November 30 720 11
1 January 31 744 1
3 March 31 744 3
5 May 31 744 5
7 July 31 744 7
8 August 31 744 8
10 October 31 744 10
12 December 31 744 12

Lists
Lists are sets of objects that are of different types. For example, you might bind a data table, regression
results, and tables of regression diagnostic results into a common object. You would assemble them in an
object of this sort.

Creating Lists

For example, imagine I were to create a table summarizing our “hours.in.month” variable:
results <- summary(calendar$hours.in.month)
results

Min. 1st Qu. Median Mean 3rd Qu. Max.
672 720 744 730 744 744

And I wanted to bind these findings to the data used to create it:
#Create a new object "data", which is just a copy of the
#Bind the data and the results, with labels
calendar.findings <- list(data = calendar,

results = results)

calendar.findings

$data
months days.in.month hours.in.month month.num
1 January 31 744 1
2 February 28 672 2
3 March 31 744 3
4 April 30 720 4
5 May 31 744 5
6 June 30 720 6
7 July 31 744 7
8 August 31 744 8
9 September 30 720 9
10 October 31 744 10
11 November 30 720 11
12 December 31 744 12
##
$results
Min. 1st Qu. Median Mean 3rd Qu. Max.
672 720 744 730 744 744

12

Calling List Elements

head(calendar.findings$data, 6)

months days.in.month hours.in.month month.num
1 January 31 744 1
2 February 28 672 2
3 March 31 744 3
4 April 30 720 4
5 May 31 744 5
6 June 30 720 6

13

	Important Tasks
	Preliminary Comment on Teaching & Learning Philosophy
	Introducing R and RStudio
	Install the Programs
	Learn the RStudio Interface
	Updating R
	Getting Help

	Markdown Documents
	Start a Markdown Document
	Writing and Coding in a Markdown Document

	Starting Your Script
	Clear the Memory
	Setting a Working Directory
	Packages

	Basic Operations in R
	Arithmetic
	Creating and Manipulating Objects
	Vectors
	Data Frames
	Lists

